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Abstract—Quantum position verification (QPV) is emerging as
a promising application for quantum networks, leveraging spatial
and quantum information to verify locations. However, current
discussions on QPV protocols are largely confined to perfect
experimental setups and one-dimensional scenarios. To address
this gap, we extend the QPVf

BB84 protocol to two dimensions.
First, we define the requirements for the 2D QPV task and assess
its performance under real-world constraints, which potentially
expose the system to external attacks. To strengthen the protocol
against these vulnerabilities, we study the ‘danger zones’, defining
a region in spacetime within which attackers can manipulate
these real-world constraints to convince verifiers. We then develop
two algorithms to implement this theory: the Verifiable Vertices
Selection algorithm, which identifies nodes that can validate their
locations with designated verifiers, and the Malicious Prover
Location Identification algorithm, which determines the ‘danger
zone’ around the prover. Finally, we present a case study to
demonstrate the conceptual implementation of the protocol. Our
findings advance the development of secure and practical QPV
protocols while highlighting the potential of quantum networks
in the noisy intermediate-scale quantum (NISQ) era.

Index Terms—quantum network, quantum cryptography,
quantum communication

I. INTRODUCTION

In an era where digital communication forms the backbone
of our global interactions, quantum networks are emerging
as the next frontier. At their core, quantum networks provide
a significant advancement by introducing quantum communi-
cation, where qubits serve as information carriers [1]. With
increasingly efficient quantum communication hardware [2],
the demand for real-world applications is growing. One such
application is Quantum Position Verification (QPV) [3], which
stands out as a promising use case for quantum networks.

Position Verification (PV) involves using one’s location as
a token of identity, without requiring a pre-shared crypto-
graphic key [4]. Identity authentication processes occur in
everyday life, and PV can significantly enhance the security
and reliability of these operations. For example, banks can
prevent unauthorized access by verifying that transactions are
initiated only from legitimate, pre-approved positions, such as
a customer’s home or a specific branch, as shown in Fig. 1.
Participants in PV are either provers, i.e. nodes that want their
exact position to be confirmed, or verifiers, i.e. nodes that attest
the location of the prover.

Figure 1: A simplified illustration of the PV protocol for
banking authentication.

One of the core concepts enabling PV protocols is the
principle of relativity, which states that information cannot
travel faster than the speed of light. The most basic classical
PV protocol is distance bounding, which upper bounds the
distance between a prover and a verifier by timing the message
exchanges between them, under the assumption that commu-
nication occurs at the speed of light in a classical channel.
However, such a protocol doesn’t suffice to precisely specify
a location, only bounding distance [5].

To go from distance bounding to position verification,
we could attempt to introduce additional verifiers. A more
complex protocol involves two verifiers aiming to verify a
prover’s location precisely. Both verifiers send messages to
the prover simultaneously and require a pre-agreed response,
ensuring mutual certification. Nevertheless, this protocol has
been proved insecure to adversaries positioned along the direct
line between the verifiers [6]. Here the integration of quantum
communication helps to reduce the chance of simple eaves-
dropping, resulting in Quantum Position Verification (QPV)
[7].

Unlike classical PV, which relies on sending two classical
bit streams, QPV leverages a quantum communication channel
to ensure security. The no-cloning theorem makes it impossible
for adversaries to copy an unknown qubit, thereby blocking
attacks that simply intercept and copy information. This QPV
protocol (QPVf

BB84 protocol) has been proven secure against
attackers who do not pre-share entangled quantum states [8].
A more detailed illustration of this protocol will be provided
in Section II.

However, most discussions about QPV protocols are limited



to perfect experimental setups and 1D cases, which are not
relevant to real-world applications [9]. The main objective of
our work is to assess and improve the feasibility of QPV tasks
in real-life network topologies. To achieve this, in Sec. III
we analyze the requirements for the 2D QPV task and give a
detailed definition of 2D-QPVf

BB84 protocol. We then quantify
the protocol’s performance under real-world conditions. We
subject our protocol to various practical constraints using a
quantum network simulator (see Sec. III). Our simulation
results indicate that quantum operation errors and photon loss
are the primary contributors to the protocol’s error rate.

To further enhance the feasibility of the protocol, we
examine the 2D-QPVf

BB84 protocol within spacetime models
(see Sec. IV). Initially, we analyze a standard network topol-
ogy where verifiers are symmetrically distributed around the
prover. In such a configuration, the security of our protocol
cannot be guaranteed due to geometric constraints. These
limitations suggest that a malicious prover cannot deceive the
verifiers beyond a certain area [10]. To better align with real-
world constraints, we further refine this area by incorporating
the prover’s processing time. We specified this refined area as
the ‘danger zone’.

Moreover, we develop two algorithms (see Sec. V) that can
be applied to any network topology: the Verifiable Vertices
Selection algorithm identifies which nodes in the network
can prove their location given a set of known verifiers; the
Malicious Prover Location Identification algorithm determines
the ‘danger zone’ from which dishonest prover can attack the
protocol.

Furthermore, in Section VI, we conduct a case study to
illustrate and evaluate the QPV task under practical con-
ditions, incorporating complex network topologies and real-
world constraints. We specify the process of implementing
the protocol in real-life scenarios and demonstrate that our
proposed algorithms enhance both the feasibility and security
of the position verification task.

II. BACKGROUND

In this section, we introduce the prerequisites, notations, and
assumptions used for QPV tasks.

A. Entanglement

Entanglement is a unique quantum mechanics phenomenon
where two or more particles become strongly interconnected.
A particular example of an entangled pair is the Einstein-
Podolsky-Rosen (EPR) pair. An EPR pair represents two
maximally entangled particles. EPR pairs can be described
using two types of orthonormal basis vectors: the computa-
tional basis and the Hadamard basis. The computational basis
consists of the standard binary states |0⟩ and |1⟩, while the
Hadamard basis is composed of the superposition states |+⟩
and |−⟩.

A fundamental feature of entanglement is the non-locality
of entangled pairs. This means that the state of one particle
instantly determines the state of the other, regardless of the
distance between them. For example, consider an EPR pair

in the computational basis: |Ψ−⟩ = 1√
2
(|01⟩ − |10⟩), If we

measure the first qubit and find it in the state |1⟩, the second
qubit must be in the state |0⟩, and vice versa. This property is
remarkably useful in QPVf

BB84 protocol, where it allows the
verifier to effectively examine the measurement results claimed
by the prover.

B. QPVf
BB84 protocol

Here we define one round of the 1D-QPVf
BB84 protocol

(Definition. II.1) [11] [12]. The spacetime sequence of this
protocol is shown in Fig. 2. At unit time t = 1, all information
arrives at the prover P . Verifiers V0 and V1 receive results from
P at unit time t = 2. The green shaded regions represent the
spacetime region before time unit 1. These regions are formed
by light travel distances from V0 and V1 to the prover P ,
denoted as region L and R respectively.

Definition II.1 (1D-QPVf
BB84 protocol). For n ∈ N, f is a

boolean function f := {0, 1}n × {0, 1}n → {0, 1} programs
measurement basis B. Basis 0 and 1 denote respectively the
computational basis and Hadamard basis.

1) Verifier V0 and V1 pre-agree on two random strings x, y
and V0 prepares the EPR pair |Ψ⟩.

2) V0 sends one qubit Q of |Ψ⟩ and x to the prover P ,
and V1 sends y to P . These three pieces of information
should arrive at P simultaneously.

3) P measures the qubit Q with the programmed basis B
immediately upon receipt, then broadcasts the measure-
ment outcome to verifiers V0 and V1. If the qubit is lost,
the prover sends “∅” (photon loss).

4) V0 measures the local qubit and records the outcome
as m. Let a and b be the answers received by verifiers
V0 and V1, respectively. V0 and V1 share (a, b,m) in
one round of communication, if both a and b arrive on
time and match m, the verifiers record this round as “c”
(correct); if the answers do not match m, they record it
as “w” (wrong). Otherwise, the result is recorded as “\”
(abort).

To fully convince the verifier, this protocol is repeated
n times. We also consider constraints such as photon loss
and quantum noise. These constraints lead to an error rate
perr even when there is only an honest prover. Let η be
the successful qubit transmission efficiency over n attempts.
By executing this protocol n times, an honest prover will
broadcast 2n outcomes such that the verifiers would record
“c”, “w”, “∅”, and “\” with probability:

• P(c) = η(1− perr)
• P(w) = ηperr
• P(∅) = 1− η
• P(\) = 0

If the overall result matches the expected probability dis-
tribution, we accept the prover’s location. However, if a
malicious prover P ⋆ employs an attack strategy resulting in
P(c⋆) ≈ P(c) as well as an acceptable P(\), we consider the
attack successful.



Figure 2: The spacetime sequence of the 1D-QPVf
BB84 pro-

tocol.

To ensure the security of the protocol, the measurement
basis B should remain unknown until all keys are well received
by the prover P . This condition is easily met in 1D-QPVf

BB84

protocol. In this setup, two regions L and R formed by the
light cone of the events sending messages from two verifiers,
are disjoint (see Fig. 2). This disjoint geometry also guarantees
the correct measurement outcome cannot simultaneously be
obtained from two independent quantum registers [13].

III. 2D QUANTUM POSITION VERIFICATION

While the 1D-QPVf
BB84 protocol offers fundamental in-

sights, its application is limited. In experiments, verifiers and
the prover are rarely aligned in a straight line, which raises
concerns about the protocol’s security and effectiveness in
higher-dimensional settings [10].

In this section, we explore the requirements for 2D-
QPVf

BB84 protocol. Building on these requirements, we define
2D-QPVf

BB84 protocol leverage entangled pairs. Additionally,
we identify three major real-world constraints that affect the
protocol’s practical implementation: quantum operation errors,
photon loss, and clock synchronization. We then assess how
these constraints influence the performance of 2D-QPVf

BB84

protocol.

A. Requirements

To thoroughly investigate the requirements for the QPV
task, we first examine a scenario where the 1D-QPVf

BB84

protocol is extended to a 2D plane. In this setup, two verifiers
are aligned on a straight line, while the prover is positioned off
this line. An attacker could exploit this by finding a symmetric
point on the plane that is closer to the verifiers, yet still
maintains the geometric symmetry.

To prevent this exploitation, the protocol must ensure the
prover is located within the intersection area defined by the
distances between the prover and the verifiers. This reasoning
extends to QPVf

BB84 protocol in any n-dimensional space, as
demonstrated by Theorem. III.1.

Theorem III.1 (General Requirement). In an n-dimensional
QPVf

BB84 protocol, n + 1 verifiers are required to uniquely
determine the position of a prover in general.

Proof: The prover’s position can only be verified within
the convex hull C of the geometry formed by the verifiers.
For n verifiers, there exists at most n− 1 dimensional convex
hull. Thus, in a general case, to verify a prover’s location in
n dimensional space, we need at least n+ 1 verifiers.

A special case is that in an n-dimensional QPVf
BB84 pro-

tocol, if the prover’s location p lies within the convex hull of
the positions of n verifiers v1,v2, . . . ,vn, i.e.,

p =

n∑
i=1

λivi, (1)

where
∑n

i=1 λi = 1 and λi ≥ 0 for all i, then these n verifiers
are sufficient to verify the prover’s location.

Based on our derivation for the general requirements, we
introduce three verifiers into the 2D-QPVf

BB84 protocol to
ensure the geometry satisfies Theorem. III.1. Additionally,
each verifier is assigned a key to program the measurement
basis. All other settings remain consistent with Definition. II.1.
We define one round of our 2D-QPVf

BB84 protocol as follows:

Definition III.1 (2D-QPVf
BB84 protocol). For n ∈ N, f is a

boolean function f := {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}
programs measurement basis B. Basis 0 and 1 denote respec-
tively the computational basis and Hadamard basis.

1) Verifier V0, V1, and V2 pre-agree on three random strings
x, y, z and V0 prepares the EPR pair |Ψ⟩.

2) V0 sends one qubit Q of |Ψ⟩ and x to the prover P ,
V1 and V2 sends y and z to P , respectively. These four
pieces of information should arrive at P simultaneously.

3) P measures the qubit Q with the programmed basis B
immediately upon receipt, then broadcasts the measure-
ment outcome to verifiers V0, V1, and V2. If the qubit is
lost, the prover sends “∅” (photon loss).

4) V0 measures the local qubit and records the outcome as
m. Let α, β, γ be the answers received by verifiers V0,
V1, and V2, respectively. If both α, β, and γ arrive on
time and match m, the verifiers record this round as “c”
(correct); if the answers do not match m, they record it
as “w” (wrong). Otherwise, the result is recorded as “\”
(abort).

In this 2D-QPVf
BB84 protocol, no additional results are

introduced compared to the 1D case. The additional keys
only increase the computation complexity of the challenge.
Therefore, the outcome probability distribution remains the
same as in Definition. II.1.

B. Real-world constraints

The security of quantum position verification has been
theoretically proven under ideal conditions [14]. However, the
practical implementation of this task faces significant chal-
lenges due to real-world constraints. In experimental settings,
fulfilling these essential requirements—such as transmitting



quantum information at the speed of light (c) and conducting
error-free quantum operations—proves to be difficult.

We identify three primary drawbacks when applying the
QPV task experimentally. Firstly, qubits are highly sensitive
to distortions caused by environmental noise, hardware imper-
fections, and operational inaccuracies, leading to unpredictable
quantum evolution. Secondly, during transmission, qubits (usu-
ally photons) may be lost due to absorption, scattering, or de-
viation onto unintended paths, thereby reducing the protocol’s
efficiency. Lastly, quantum information travels slower than
classical information, which can be transmitted at the speed of
light (c) using microwaves. In contrast, quantum information
typically travels at about 2

3c in an optical fiber. This speed
differential complicates message synchronization and allows
potential attackers to exploit timing variations.

1) Quantum operation errors: In the context of the QPV
task, quantum errors typically include State Preparation and
Measurement (SPAM) errors. These errors consist of two
main components: state preparation errors, which occur when
there are deviations from the intended or ideal quantum state
during preparation, and measurement errors, which arise when
inaccuracies occur in determining the quantum state of a qubit
or quantum system during measurements. The SPAM error
probability can be expressed as

PSPAM = Psp + Pm − PspPm (2)

where Psp is the probability of state preparation error, and
Pm is the probability of measurement error. The item −PspPm
accounts for the possibility of both types of errors occurring
simultaneously, which wouldn’t affect the correctness of the
system.

It is difficult to quantify state preparation and measurement
errors separately without an ancillary system [15]. These
two errors usually happen together [16], triggered by various
parameters. However, since they all belong to bit-flip errors,
we can easily represent their impact via simulation.

To assess these errors in the QPV task, we use the NetSquid
[17], an event-driven quantum network simulator to evaluate
the 2D-QPVf

BB84 protocol’s performance. In Fig. 3 we com-
pare the protocol’s error rate perr against various quantum error
probability pQ, subject to three types of quantum errors: SPAM
error, Measurement error, and State Preparation error. For
clarity, we set the average pQ to 20%, which is significantly
larger than the SPAM error rate in experiments (4×10−3) [18].
In general, the protocol’s error rate perr increases as pQ rises.
Among the error types, SPAM error (red line) consistently
remains the highest across the entire range of pQ.

Measurement error (black line) shows an exponential in-
crease and typically lies between the SPAM and State Prepa-
ration errors throughout most of the range. In contrast, State
Preparation error (blue line) remains the lowest among the
three error types. This lower impact is because the verifier only
needs to assess the non-locality of the EPR pair, regardless of
their exact states. Therefore, even if the initial state deviates
to an undesired state, it does not affect the correctness of the

Figure 3: Protocol error rate perr v.s. Quantum error probability
pQ

QPVf
BB84 protocol as long as the verifier can successfully

prepare the EPR pair.
Through simulation, we can effectively distinguish the

contributions of measurement and state preparation errors.
Notably, measurement error significantly impacts the quantum
error in the 2D-QPVf

BB84 protocol.
2) Photon loss: Photon is naturally the most suitable car-

rier for establishing quantum links between end nodes [9].
Currently, there are two types of photonic quantum channels:
free-space channels via satellites [19] and fiber-based channels
[20]. Each type of channel has its advantages, but both suffer
from photon loss, which inevitably affects the communication
rate across the network. The loss rate can be 0.2dB/km for
photons in standard telecom bands. In general, let α be the
photon loss coefficient (dB/km), the probability of photon loss
Plossover distance d is:

Ploss = 1− 10−
ad
10 (3)

This information loss can significantly jeopardize the pro-
tocol. In Fig. 4a, we compare the protocol’s error rate against
distance under three conditions: ideal, photon loss, and all
constraints. Our results show that photon loss significantly
increases the protocol’s error rate, with an obvious effect over
longer distances.

Moreover, attackers can manipulate photon loss to compro-
mise the protocol. We introduce the random guess strategy
[8], as shown in Definition. III.2. This attack strategy is easy
to implement since it does not require complex quantum
operations.

Definition III.2 (Random Guess Strategy). Let Alice, Bob,
and Charlie eavesdrop on the intermediate point between the
verifier and the prover. We assume they can intercept both
classical and quantum information.

1) Alice intercepts the qubit |Ψ⟩, measures with a random
basis x̃ instead of programmed basis B

2) When Bob and Charlie receive the key, they immediately
send it to Alice to see if programmed basis B match x̃



(a) Protocol error rate perr vs. dis-
tance for ideal conditions, photon
loss, and all constraints.

(b) Protocol error rate perr vs.
photon loss rate η for malicious
and honest provers.

Figure 4: Impact of photon loss on protocol error rates: (a)
shows how different constraints affect the error rate over
distance, (b) shows how photon loss rate affects the error rate
under different prover scenarios.

3) If yes, then they broadcast this result, if not, they send
“∅” (photon loss) instead to mislead the verifier.

As shown in Fig. 4b, we apply this attack to our protocol,
comparing the protocol’s error rate Perr between a malicious
prover and an honest prover under increasing photon loss rates
η. This strategy becomes more effective as the photon loss rate
increases. Specifically, when the photon loss rate η exceeds
0.4, the honest prover’s error rate surpasses the malicious
prover’s, making the malicious prover more convincing to the
verifiers.

3) clock-synchronization: Ensuring the security of mes-
sages in the quantum position verification task necessitates
that all information arrives at the prover simultaneously. This
requirement demands precise control over the timing and
delay of information transmission. However, achieving such
synchronization accuracy in practice is challenging and raises
several open questions. One potential solution is to use an
ancillary system, such as a qubit, to facilitate synchronization
[21]. An alternative approach involves integrating classical
network techniques. Recent research suggests that leveraging
a programmable quantum data plane presents a promising
solution to these challenges [22].

IV. 2D QPV MODELS

In this section, we investigate two models based on our
2D-QPVf

BB84 protocol to assess its security across different
network topologies.

A. Standard network topology

To give a comprehensive analysis of the 2D-QPVf
BB84

protocol, we consider the following scenario: Three verifiers
V0, V1, and V2 are positioned at the vertices of an equilateral
triangle, with the honest prover P located at the center. The
light cone from the prover P to each verifier Vi (where i =
0, 1, 2) form three circular regions R0, R1, R2, as illustrated
in Fig. 5.

To examine the security of our 2D-QPVf
BB84 protocol

within this model, it is intuitive to extend the disjoint reasoning

(a) The standard network
topology model. (b) δ = 0

(c) ‘Danger zone’ with diame-
ter δ around the prover P . (d) δ = 0.23

Figure 5: Illustration of the standard 2D-QPVf
BB84 protocol

model and its security considerations: (a) The standard model
where verifiers V0, V1, and V2 are equidistant from the
prover P ; (b) The initial setup without the ‘danger zone’
(δ = 0)showing three overlapping regions formed by the
light cone from the prover P to the verifiers; (c) The ‘danger
zone’ (in pink) with a diameter δ around the prover P , where
malicious prover outside this zone cannot break the protocol
by intercepting keys; (d) When δ = 0.23, the three regions
are disjoint, reducing the risk of information interception by
attackers.

used in the 1D-QPVf
BB84 protocol (Fig. 2) to the 2D case.

However, as shown in Fig. 5b, the three regions R0, R1, R2 in
our 2D-QPVf

BB84 protocol overlap instead of being disjoint.
This overlap allows attackers to program the correct mea-
surement basis before the information reaches the prover P .
Therefore, outside this area, a malicious prover cannot make
the verifiers accept [10].

The time at which the measurement basis B is programmed
marks the earliest time when a point at a distance δ from the
prover P gains access to all keys x0, x1, x2. In the standard
model, this occurs when δ ≈ 0.23 · l [10], where l is the
distance between the prover and a verifier. Consequently, this
area forms a circle with a diameter of 2δ, which corresponds
to approximately 46% of l. We refer to this region as the
‘danger zone’, as beyond this area, a malicious prover is unable
to compromise the protocol. However, this ‘danger zone’ is
insufficient as it overlooks the complexities of overlapping
areas within the zone and real-world constraints.

B. Arbitrary network topology

In real-world network topologies, nodes involved in the
protocol are often not uniformly distributed, which introduces



significant complexities and challenges to protocol security.
Moreover, the time required for the prover to respond opens
a window for attackers to exploit the protocol. These con-
straints highlight a critical limitation: the ‘danger zone’ in
the standard model, which is intended to identify where a
malicious prover cannot successfully deceive the verifier, does
not adequately represent the threats or vulnerabilities inherent
in actual network setups. More importantly, it fails to specify
areas that directly threaten protocol integrity. Hence, refining
the definition and scope of the ‘danger zone’ in the standard
model is essential to accommodate real-world networks’ di-
verse configurations and vulnerabilities more effectively.

To enhance our understanding of the ‘danger zone’ in more
complex network setups, we consider a basic configuration
of four nodes, including three verifiers and one prover. We
configure a logical arbitrary triangle, where the three verifiers
V0, V1, and V2 are located at each vertex of the triangle,
separated with different distances d01, d02, and d12; the prover
P is located inside the triangle, and the distance from each
verifier to prover P is denoted as d0, d1 and d2, as illustrated
in Fig. 6a. We also incorporate the prover’s processing time ϵ,
which is necessary for programming functions and conducting
qubit measurements, into our revised model (see Fig. 6b).

To further refine our security analysis, we utilize spacetime
geometry, which is a set of all locations in both space and time.
An event C(x, t) occurs at space x and time t. Throughout
our analysis, we assume a flat spacetime, characterized by
(t, x1, x2, ..., xn) with t, x1, x2, ..., xn ∈ R. Following the
definitions in [10], we define the causal future C+(x) of an
event x as the set of all events reachable from x, similarly,
we define causal past as C−(x) as all events in the past that
can influence x. We designate V +

i as the spacetime position
where Vi sends the information and V −

i as the point where
Vi expects a response from the prover P . These adjustments
enable us to develop a more robust security framework, leading
to Theorem. IV.1:

Theorem IV.1. Let Ω denote the overlap region in a flat
spacetime for our 2D-QPVf

BB84 protocol, defined as Ω :=⋂2
i=0 C

+(V +
i )∩C−(V −

0 )∩C−(V −
1 )∩C−(V −

2 ). If the space-
time trajectory of the prover P is represented by P(x, t+ ϵ),
then the protocol remains secure if Ω\P(x, t+ ϵ) = ∅.

Proof: Assume for contradiction that there exists a set E
within the same spacetime such that E ⊂ Ω and E ∩P(x, t+
ϵ) = ∅. This would imply that there is a feasible position and
time within E for a malicious prover not located on P(x, t+ϵ)
to receive the signals x1, x2, x3, compute the outcomes hon-
estly, and transmit them back to the verifiers within the allowed
time constraints, thereby potentially compromising the security
of the protocol.

This scenario contradicts the condition in the theorem.
According to the theorem, for the protocol to remain secure,
no such E should exist; thus, the prover’s spacetime trajectory
P(x, t+ ϵ) must intersect with Ω, ensuring all necessary inter-
actions occur within the secure region defined by Ω. Therefore,
any existence of E such that E\P(x, t + ϵ) = ∅ leads to

a contradiction, implying the necessity of our condition for
protocol security.

Theorem. IV.1 establishes a more comprehensive and effec-
tive security framework than the disjoint reasoning approach.
It is applicable across various network topologies and ac-
counts for extra processing time for the prover. Moreover,
this theorem enables us to identify the actual ‘danger zone’
Γ, where attackers could potentially manipulate the prover’s
processing time to execute attacks. We define this zone in
Corollary. IV.1.1.

Corollary IV.1.1. In flat spacetime, given points x, y and a
real number d, let E(x, y, d) denote an ellipse with foci x and
y.

Assume verifier Vi sends information at time t+i and posi-
tion x+

i , and expects the response at time t−j and position x−
j .

Then the region Ω is equivalent to Π =
⋂2

i=0
j=0
E(x+

i , x
−
j , t

−
j −

t+i − ϵ).

Proof: For any z ∈ Ω,

iff ∃t : (z, t) ∈ P =
⋂
i

C+((x+
i , t

+
i + ϵ)) ∩

⋂
j

C−((x−
j , t

−
j ))

iff ∃t : (∀i : ∥x+
i − z∥ ≤ t− t+i − ϵ)

∧ (∀j : ∥x−
j − z∥ ≤ t−j − t)

iff ∃t : (max
i
∥x+

i − z∥+ t+i + ϵ ≤ t)

∧ (max
j
∥x−

j − z∥ − t−j ≤ −t)

iff max
i,j
∥x+

i − z∥+ t+i + ϵ+ ∥x−
j − z∥ − t−j ≤ 0

iff ∀i, j : ∥x+
i − z∥+ ∥x−

j − z∥ ≤ t−j − t+i − ϵ

iff z ∈
⋂
i,j

E(x+
i , x

−
j , t

−
j − t+i − ϵ)

This strategy allows us to define the ‘danger zone’ Γ =
Π\P in any network configuration. By identifying this region,
we can better understand the potential vulnerabilities where
attackers might manipulate the processing times of the honest
prover.

V. ALGORITHMS

To effectively apply the 2D-QPVf
BB84 protocol in practi-

cal scenarios, we outlined several requirements in previous
sections, including the geometry of verifiers and the prover
(Sec. III-A) and real-world constraints (Sec. III-B). Addition-
ally, the vulnerability to physical attacks on network nodes
poses a significant threat, potentially allowing adversaries to
compromise the protocol’s security.

To address these challenges and enhance both the feasibility
and security of the protocol, we propose two algorithms.
The Verifiable Vertices Selection (VVS) algorithm selectively
identifies and assesses nodes that can prove their location
within a network topology by a designated set of verifiers.

Furthermore, the Malicious Prover Location Identification
(MPLI) algorithm enhances security by leveraging insights



(a) General model in spacetime. (b) Model adaptation with prover’s processing time ϵ.

Figure 6: Illustrations of the general model in spacetime with different settings.

from our ‘danger zone’ theorem. This algorithm predicts
potential nodes within a network topology that could exploit
vulnerabilities in the protocol, thereby enabling preemptive
strategies against malicious attacks.

Together, these algorithms contribute to enhancing the prac-
tical applicability and robustness of our 2D-QPVf

BB84 protocol
in real-world environments. Further, in Sec. VI, we provide a
case study using our proposed algorithms based on real-world
network topology.

A. VVS: Verifiable Vertices Selection

Current quantum nodes are expensive and consume sub-
stantial energy [23]. Such resource scarcity drives the need
to optimize the utility of quantum networks for specific tasks
such as position verification. To leverage quantum networks
effectively for position verification tasks, it is essential to first
determine the coverage provided by certain quantum nodes
within the network.

it is essential to ensure that the prover remains within the
convex hull defined by the verifiers’ geometric arrangement,
as stated in Theorem III.1. Our VVS algorithm, presented in
Algorithm. 1, addresses this requirement for a given QPV task
by ensuring the verifiability of nodes within the specified geo-
metric constraints. Additionally, our previous security analysis
in Sec. IV demonstrates that placing the prover closer to the
centroid of the verifiers’ geometry enhances the protocol’s
security. The VVS algorithm also evaluates the nodes based
on their security aspects.

Specifically, VVS takes four input parameters: the network
topology in a graph format G, and three verifiers’ locations
V0, V1, and V2. The VVS starts by initializing an empty set S
to store the verifiable vertices (Line 1). It then computes the
centroid C of the triangle formed by V0, V1, and V2 (Line 2).
For each vertex x in the set G (Line 3), it initializes an
‘accumulator‘ to 0 (Line 4). The algorithm then loops through
each pair of verifiers (i, j) where i, j ∈ {0, 1, 2} and i ̸= j

(Line 5). For each pair, it checks if the sum of distances from
vertex x to verifiers Vi and Vj is less than the distance between
verifiers Vi and Vj (Line 6). If this condition is true, the
‘accumulator‘ is incremented by 1 (Line 7). After checking all
pairs, if the ‘accumulator‘ equals 3 (Line 8), vertex x is added
to S (Line 9). Finally, the list S is sorted by the distance of
each vertex x to the centroid C in ascending order (Line 10).
After all vertices have been processed, the algorithm returns
the sorted set S (Line 11).

Algorithm 1: VVS: Verifiable Vertices Selection
Input: A set of vertices G, three verifiers’ locations

denoted as V0, V1, V2

Output: A set S of vertices can be proved location by
V0, V1, V2, sorted by their effectiveness

1 Initialize S ← ∅;
2 Compute the centroid C of V0, V1, V2:

C =

(
xV0

+ xV1
+ xV2

3
,
yV0

+ yV1
+ yV2

3

)
3 for each vertex x in G do
4 accumulator← 0;
5 for each pair (i, j) where i, j ∈ {0, 1, 2}, i ̸= j do
6 if d(x, Vi) + d(x, Vj) < d(Vi, Vj) then
7 accumulator← accumulator + 1;

8 if accumulator = 3 then
9 Add x to S;

10 Sort S by d(C, d(x,C));
11 return S;

B. MPLI: Malicious Prover Location Identification

Malicious Prover Location Identification (MPLI) is crucial
in enhancing the security of position verification tasks. By



predicting potential locations where malicious provers could
take over the network, MPLI allows for preemptive measures
to be taken to secure the verification process. This proactive
approach helps in the early detection of threats.

MPLI leverages the ‘danger zone’ theorem we proposed.
Given a network topology and the QPV task’s setup, the
algorithm predicts which nodes within the network could
potentially be exploited as malicious provers. The algorithm
is detailed as Algorithm. 2.

The MPLI algorithm takes six input parameters: a set of
vertices G, the locations of three verifiers V0, V1, V2, the
location of the prover P , and the prover’s response time ϵ.
The algorithm begins by initializing an empty set Π to store
the ‘danger zone’ (Line 1). It then iterates through each pair
of verifiers (Line 2) to determine the size of the ‘danger zone’
using Corollary IV.1.1 (Lines 3 to 7). Next, the algorithm
initializes an empty set M to store potential malicious provers
(Line 8) and iterates through each node N in G (Line 9).
For each node, it checks if N is neither a verifier nor the
prover (Line 10) and if N belongs to the ‘danger zone’ set
Π (Line 11). If both conditions are met, N is added to the
set M (Line 12). Finally, the algorithm returns the set M of
potential malicious provers (Line 13).

Algorithm 2: MPLI: Malicious Prover Location Iden-
tification

Input: A set of vertices G, three verifiers’ locations
V0, V1, V2, the prover’s location P , and
response time ϵ

Output: A set of vertices M ∈ G that could be
potential malicious prover

1 Initialize Π← ∅;
2 for each pair of verifier indices (i, j) from 0 to 2 do
3 t+j = t+i = di

c

4 Calculate the ellipse E(v+i , v
−
j , t

−
j − t+i − ϵ)

5 if Π is empty then
6 Π← E(v+i , v

−
j , t

−
j − t+i − ϵ);

else
7 Π← Π ∩ E(v+i , v

−
j , t

−
j − t+i − ϵ);

8 Initialize M ← ∅;
9 for each node N in G do

10 if N ̸= Vi where i ∈ {0, 1, 2} and N ̸= P then
11 if N ∈ Π then
12 Add N to M ;

13 return M ;

The MPLI algorithm identifies the ‘danger zone’ within
the network where attackers may effectively compromise the
protocol by manipulating the response time window.

VI. CASE STUDY

In this section, we present an illustrative case study to
demonstrate the conceptual implementation of the QPVf

BB84

protocol under real-world scenarios. We begin by detailing the

Figure 7: Quantum Internet Deployment Plan in the Nether-
lands (QDNL project). Nodes (in orange) within this network
should perform quantum communication.

network topology and the parameters for our 2D-QPVf
BB84

protocol. We then describe the conceptual framework of our
proposed protocol within a representative network topology.

A. Experiment set-up

To illustrate the utility of our proposed algorithms, we
use the quantum internet deployment plan in the Netherlands
(QDNL) [24], shown in Fig. 7. The QDNL project envisions
a nationwide quantum internet encompassing three primary
regions: Amsterdam, Delft, and Eindhoven. These regions are
interconnected, with each node capable of quantum commu-
nication both within and between the areas.

To ensure our analysis reflects realistic conditions, we
incorporated relevant constraints from Sec. III. We introduced
quantum operation errors and photon loss into the quantum
channels, setting the quantum error probability at 0.4% and
the photon loss rate at 0.2 dB/km. Additionally, we set
the quantum operation time to 200 nanoseconds, sufficient
for a complete single-qubit measurement [25]. To address
synchronization issues, we manually created a control plane
to delay information transmission times, ensuring the simul-
taneous arrival of data. This effectively ‘stretched’ the QDNL
network topology into straight-line connections, transforming
the physical topology into an abstract logical topology. For the
rest, we keep the settings in Sec. III.

B. Case study

We begin the position verification task with the Verifier
Selection Problem. For general 2D QPV tasks, selecting three
verifiers is essential. The challenge in this selection lies in
balancing coverage and efficiency.



(a) The VVS algorithm. (b) The MPLI algorithm.

Figure 8: Implementing two algorithms on the QDNL network
topology: (a) The VVS algorithm selects three nodes as veri-
fiers (in claret) based on the QPV protocol’s geometry require-
ments, identifying four nodes that can prove their location (in
green); (b) The MPLI algorithm identifies Eindhoven as the
prover (in green) and determines the ‘danger zone’ (in brown).

A verifier set with broader coverage involves positioning
verifiers at relatively large distances from each other. As noted
in Theorem. III.1, greater distances between verifiers result in
a larger convex hull, which allows the protocol’s geometry
to encompass more nodes and effectively test their locations.
However, this arrangement sacrifices efficiency, requiring more
precise synchronization and longer running times, which may
increase vulnerability to attacks. In contrast, a verifier set
optimized for efficiency covers fewer nodes but benefits from
higher synchronization accuracy and shorter running times,
thereby enhancing both performance and security.

To better illustrate our proposed algorithms, we prioritize
a set with higher coverage. In this scenario, we select Ams-
terdam, Den Haag, and Waalre as our verifiers (see Fig. 8a).
Using our Verifiable Vertices Selection (VVS) algorithm, we
determine that this verifier set covers Aalsmeer, Delft, High-
tech Campus, and Eindhoven, which are the locations we can
verify. This selection scheme covers around 57% of the nodes
inside this network, excluding the three verifiers.

Before initiating the protocol, we undertake preemptive
actions to identify potential threats. For example, with Eind-
hoven as the prover, we evaluate whether nearby nodes might
act as malicious provers. Our Malicious Prover Location
Identification (MPLI) algorithm, takes the network topology
and the protocol configuration (with Amsterdam, Den Haag,
and Waalre as verifiers and Eindhoven as the prover) as inputs,
pinpoints nodes within the ‘danger zone’ around the prover.
In this case, no nodes within this network fall inside this
zone (see Fig. 8b). Given this configuration, our 2D-QPVf

BB84

protocol is theoretically secure within this network setup.

To complete the QPV task, the protocol is repeated at least
a hundred times to generate an outcome distribution. If this
distribution matches our expectations and exhibits a low abort
rate, we then authenticate the prover’s location and proceed
with forwarding for further applications.

VII. CONCLUSION

In this paper, we extended the quantum position verification
task to a more broadly applicable two-dimensional case. To
achieve this, we thoroughly investigated the requirements and
assessed the protocol under real-world constraints. We also
developed two models to identify the ‘danger zone’ around the
prover, thereby enhancing the protocol’s security. Initially, we
introduced the standard model along with its security claims
based on geometry properties. However, this model proved
insufficient for handling complex network topologies and real-
world conditions. Consequently, we refined our ‘danger zone’
theory to accommodate complex network configurations. To
ensure the effective execution of our 2D-QPVf

BB84 protocol,
we designed two algorithms: the Verifiable Vertices Selection
(VVS) algorithm, which determines the coverage of verifiable
nodes based on the network topology and verifier sets; and the
Malicious Prover Location Identification (MPLI) algorithm,
which leverages our ‘danger zone’ model to identify potential
malicious provers within the network. These approaches col-
lectively enhance the security and efficiency of the protocol.
To illustrate the entire process, we conducted a case study
using the QDNL network topology, demonstrating that four
key processes are essential to complete the position verification
task: verifier selection, malicious node identification, repeated
protocol execution, and results matching.

Despite these advancements, our work is limited to evaluat-
ing the protocol against the random guess attack model, leav-
ing other potential attack models unexplored. Future research
should focus on more complex attack scenarios, such as those
leveraging pre-entangled adversaries, to better understand the
protocol’s resilience under diverse conditions. Additionally,
future studies should analyze a broader range of QPV proto-
cols in real-world scenarios, including those utilizing squeezed
states or Bosonic modes. Another limitation of our study is
the lack of a detailed solution for the clock synchronization
constraint. To address this, we are working on integrating a
programmable network control plane to mitigate these chal-
lenges. Furthermore, integrating programmable control planes
enables a more flexible control of quantum networks and their
applications.

As quantum network technologies continue to evolve, our
findings offer valuable insights into the development of prac-
tical and secure QPV protocols. We are actively incorporating
computer network techniques, such as programmable control
planes and data planes, to bridge the gap between theoretical
designs and real-world implementation, bringing QPV closer
to practical deployment.

The authors have provided public access to their code and/or
data at: https://doi.org/10.5281/zenodo.14629988.
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[11] L. Escolà-Farràs and F. Speelman, “Lossy-and-constrained extended
non-local games with applications to cryptography: Bc, qkd and qpv,”
2024. [Online]. Available: https://arxiv.org/abs/2405.13717

[12] A. Bluhm, M. Christandl, and F. Speelman, “A single-qubit position
verification protocol that is secure against multi-qubit attacks,” Nature
Physics, vol. 18, no. 6, pp. 623–626, 2022.

[13] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell
nonlocality,” Reviews of modern physics, vol. 86, no. 2, pp. 419–478,
2014.

[14] J. Liu, Q. Liu, and L. Qian, “Beating Classical Impossibility of
Position Verification,” in 13th Innovations in Theoretical Computer
Science Conference (ITCS 2022), ser. Leibniz International Proceedings
in Informatics (LIPIcs), M. Braverman, Ed., vol. 215. Dagstuhl,
Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022,
pp. 100:1–100:11. [Online]. Available: https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.ITCS.2022.100

[15] H. Yu and T.-C. Wei, “Efficient separate quantification of state prepa-
ration errors and measurement errors on quantum computers and their
mitigation,” arXiv preprint arXiv:2310.18881, 2023.

[16] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White,
D. Sank, J. Y. Mutus, B. Campbell, Y. Chen et al., “State preservation by
repetitive error detection in a superconducting quantum circuit,” Nature,
vol. 519, no. 7541, pp. 66–69, 2015.

[17] T. Coopmans, R. Knegjens, A. Dahlberg, D. Maier, L. Nijsten,
J. de Oliveira Filho, M. Papendrecht, J. Rabbie, F. Rozpedek,
M. Skrzypczyk et al., “Netsquid, a network simulator for quantum
information using discrete events,” Communications Physics, vol. 4,
no. 1, p. 164, 2021.

[18] C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh, A. Hankin, J. P.
Gaebler, D. Francois, A. Chernoguzov, D. Lucchetti, N. C. Brown,
T. M. Gatterman, S. K. Halit, K. Gilmore, J. A. Gerber, B. Neyenhuis,
D. Hayes, and R. P. Stutz, “Realization of real-time fault-tolerant
quantum error correction,” Phys. Rev. X, vol. 11, p. 041058, Dec
2021. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevX.
11.041058

[19] S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin,
Q. Shen, Y. Cao, Z.-P. Li et al., “Satellite-to-ground quantum key
distribution,” Nature, vol. 549, no. 7670, pp. 43–47, 2017.

[20] S. Bose, “Quantum communication through an unmodulated spin chain,”
Physical review letters, vol. 91, no. 20, p. 207901, 2003.

[21] L. Zhang, Z. Wang, Y. Wang, J. Zhang, Z. Wu, J. Jie, and Y. Lu,
“Quantum synchronization of a single trapped-ion qubit,” Physical
Review Research, vol. 5, no. 3, p. 033209, 2023.

[22] W. Kozlowski, F. Kuipers, R. Smets, and B. Turkovic, “Quip: A p4
quantum internet protocol prototyping framework,” IEEE Journal on
Selected Areas in Communications, 2024.

[23] Z. Han, C. Lyu, Y. Zhou, J. Yuan, J. Chu, W. Nuerbolati, H. Jia,
L. Nie, W. Wei, Z. Yang, L. Zhang, Z. Zhang, C.-K. Hu, L. Hu,
J. Li, D. Tan, A. Bayat, S. Liu, F. Yan, and D. Yu, “Multilevel
variational spectroscopy using a programmable quantum simulator,”
Phys. Rev. Res., vol. 6, p. 013015, Jan 2024. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevResearch.6.013015

[24] W. Kozlowski, F. A. Kuipers, R. Smets, and B. Turkovic, “Quip: A
p4 quantum internet protocol prototyping framework,” IEEE Journal on
Selected Areas in Communications, vol. 42, no. 7, pp. 1936–1949, 2024.

[25] L. Chen, H.-X. Li, Y. Lu, C. W. Warren, C. J. Križan, S. Kosen,
M. Rommel, S. Ahmed, A. Osman, J. Biznárová et al., “Transmon qubit
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